A scalarization-based method for multiple part-type scheduling of two-machine robotic systems with non-destructive testing technologies
Authors
Abstract:
This paper analyzes the performance of a robotic system with two machines in which machines are configured in a circular layout and produce non-identical parts repetitively. The non-destructive testing (NDT) is performed by a stationary robotic arm located in the center of the circle, or a cluster tool. The robotic arm integrates multiple tasks, mainly the NDT of the part and its transition between a pair of machines. The robotic arm cannot complete the transition if it identifies a fault in the part. The main feature of the NDT technology is that its required time is changed by altering the testing cost. This generates a trade-off between cost and cycle time. Initially, the problem of robotic arm scheduling and part sequencing is jointly solved to supports the decision making for reliability improvement of small-scale robotic systems with NDT technologies. We show how the case of non-identical parts can be converted into a travelling salesman problem (TSP). Then, we provide a generalization of the framework based on three characteristics: pickup criterion, layout and travel time metric. The results are extended for the interval and no-wait pickup criteria, and then some notes are provided for travel time saving of different layout and travel time metric. It is shown whether circular systems are equivalent to linear systems, or they dominate linear cases in general terms.
similar resources
a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
full textCustomer Order Scheduling with Job-Based Processing and Lot Streaming In A Two-Machine Flow Shop
This paper considers a customer order scheduling (COS) problem in which each customer requests a variety of products processed in a two-machine flow shop. A sequence-independent attached setup for each machine is needed before processing each product lot. We assume that customer orders are satisfied by the job-based processing approach in which the same products from different customer orders f...
full textRobotic Non-Destructive Inspection
Automation of non-destructive testing (NDT) of engineering components and structures represents one of the strategic objectives of many industries. It enables increases in accuracy, precision and speed of inspection while reducing production time and associated labour costs in contrast to manual inspection. The use of robots can provide additional flexibility and autonomy to automated NDT. Auto...
full textScheduling a two-machine robotic cell: A solvable case
The paper deals with the scheduling of a robotic cell in which jobs are processed on two tandem machines. The job transportation between the machines is done by a transportation robot. The robotic cell has limitations on the intermediate space between the machines for storing the work-in-process. What complicates the scheduling problem is that the loading/unloading operation times are non-negli...
full textMeasurement and Modelling of the Rubber Resilience based on Ultrasonic Non-destructive Testing in Tires
In tire industry, it is very crucial to evaluate physical and mechanical properties of the rubber which is used for production of the tire, to ensure the quality of the final product. Resilience is an important property of a rubber, which cannot be evaluated through direct measurement in production cycle in this industry. Therefore, non-destructive ultrasonic testing, which has been used in man...
full textMy Resources
Journal title
volume 10 issue 1
pages 1- 17
publication date 2019-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023